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Chapter 2

Stationarity, Ergodicity and Mixing of

Resetting Time Series

2.1 Introduction

Since the popularisation of linear time series models such as the autoregressive moving

average model (Box et al., 1970) for level modelling and the autoregressive conditional

heteroskedasticity (Engle, 1982) model for volatility modelling much innovation has been

made. Present-day, fitting time series with nonlinear models has become increasingly

common. A selection of such nonlinear methods that can be applied to both level and

volatility modelling are regime switching models (Hamilton, 1989), threshold models

(Tong and Lim, 1980; Zakoian, 1994) and score driven models (Creal et al., 2013; Harvey,

2013).

Stability properties of both data generated by a model and unobserved parameters

when filtering data are very useful. Knowing when a time series is stationary ergodic with

mixing properties allows one to apply limit theorems to obtain consistency and asymptotic

normality of estimators. However, ensuring stability of econometric models becomes in-

creasingly harder as the models get more complicated. Nonlinear dynamics imply that the

theory on Lyapunov exponents as developed in Bougerol and Picard (1992a,b) cannot be

used. Therefore one has to resort to more involved methods such as Markov chain theory

and geometric ergodicity (Meyn and Tweedie, 2012) or stochastic recurrence equation

theory as developed in Bougerol (1993) and Straumann (2005). These methods ensure



CHAPTER 2. STATIONARITY, ERGODICITY AND MIXING OF RESETTING
TIME SERIES

stability by imposing that the updating function satisfies certain contraction or bounded

growth or drift properties. See for example Cline and Pu (1999) and Saı̈di and Zakoian

(2006) or Blasques et al. (2014) and Straumann (2005) for the application of these condi-

tions to various models.

This paper derives general stability conditions for a large collection of models that

are typically either infeasible or less efficient (in the sense of a smaller parameter space)

to analyse with the existing methods. This collection of models is characterised by a

property that we denote resetting, which requires that the model has a positive probability

to update to a fixed, but possibly stochastic, state, irrespective of its past values. The

resetting condition allows for very wild sample path behaviour between resetting times, as

the reset ensures that the sample path will return to a stable base line. That means that we

can include typically unstable dynamics such as explosive or very discontinuous updates

in the time series. The framework lends itself naturally to regime switching models, where

we are then free to make all but one regime as unstable as we want as long as we ensure

that the last regime enforces a reset.

The resetting condition might appear to be restrictive at first, but is often satisfied

in time series where sudden drops or increases are observed. Typical examples of such

time series are stocks exhibiting financial bubbles, where the crash of the bubble is the

moment where the time series resets. See for example the model in Blasques et al. (2018b)

and Chapter 3 of this thesis that is developed to describe the Bitcoin/USD exchange rate

studied in Hencic and Gouriéroux (2015). There the exchange rate Xt is modelled as the

sum of a stationary ergodic process µt and a nonnegative bubble process bt, where

bt = (ω + αbt−1)1{bt−1 < k(µt − c)}

with ω, α > 0 and k, c ∈ R. This model consists out of two regimes: one autoregressive

regime bt = ω + αbt−1 and one collapsing regime bt = 0. The bubble process bt−1 is

nonnegative, so if the innovation µt < c, then the indicator function does not hold for

any possible value of bt−1 and hence the bubble process will collapse/reset regardless of

its past values. Note that the stability conditions allow the autoregressive parameter α to

be greater than one in this model, in fact this is encouraged to describe bubble behaviour.
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2.1. INTRODUCTION

This is something that is normally associated with unstable behaviour in autoregressive

processes.

An example of collapsing, and thus resetting, volatility dynamics can be found in a

model used by Saı̈di and Zakoian (2006) to study the real financial time series discussed

in Saı̈di (2003). They define the dynamics of a heteroskedastic time series (εt)t∈Z as

εt = σtηt,

σ2
t = ω + αε2t−11

{
ε2t−1 > kε2t−2

}
,

(2.1)

where (ηt)t∈Z is a strictly stationary and ergodic sequence of random variables, the pa-

rameters α and k are nonnegative and ω is positive. Similarly to the previous example the

parameter α is allowed to be greater than one and model (2.1) consists of two regimes.

One regime is the traditional ARCH(1) update σ2
t = ω + αε2t−1 and the other is the con-

ditional homoskedastic model σ2
t = ω. The model changes from the constant volatility

regime to the ARCH(1) specification when the relative variation ε2t−1/ε
2
t−2 becomes large,

indicating a setting in which it is more likely for the volatility to be time varying. The

collapse condition is harder to discern in this model, but occurs when two consecutive η’s

are much smaller than their predecessors. Saı̈di and Zakoian (2006) analyse the stability

of their model (2.1) using Markov chain theory. They show the existence of a stationary

and β-mixing solution, under the condition that the distribution of the underlying process

(ηt)t∈Z is independent and identically distributed (iid), has strict positive density and fixed

moments E(ηt) = 0 and E(η2
t ) = 1. Using our approach we can show the existence of a

unique, stationary and ergodic or ϕ-mixing solution, to which any sample path converges.

The assumptions needed to get these results are less strict than those imposed in Saı̈di

and Zakoian (2006). Our method also allows for extensions of the model with minimum

additional theoretical work.

The rest of the paper is structured as follows. Section 2.2 discusses stability condi-

tions for random functions on separable Banach spaces and states our results in their most

general form. Section 2.3 illustrates how to apply the theory to a practical model by con-

sidering a generalisation of model (2.1) and deriving the stability conditions for various

distributional assumptions. Moreover, we showcase the ease of application by deriving

the conditions for various practical examples including leverage effects and robust news
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impact curves and also show how the method can be used to derive moment bounds.

2.2 Stability results

In this section we prove our main results for resetting time series. Theorem 2.2.1 shows

the existence of a stationary ergodic solution to which all sample paths converge and The-

orem 2.2.4 discusses the existence of a solution that is ϕ-mixing at geometric rate. We

base our treatment of stability on stochastic recurrence equations (SREs) as is done in

Straumann (2005) and Straumann and Mikosch (2006). The main advantage of stochastic

recurrence equation (SRE) techniques is that they are very general. For example, proposi-

tion 7.6 in Kallenberg (2002) proves that any homogeneous Markov chain can be seen as

a solution to a SRE. We refer the reader to Diaconis and Freedman (1999) for a thorough

overview of SREs.

We will work with random elements on Banach spaces. This allows us to describe time

varying variables in econometric models as functions of the model parameters, which can

be used to obtain stronger inference results as is done in Straumann and Mikosch (2006).

Let S be a closed subset of a separable Banach space equipped with a norm ‖·‖ and Borel

sigma-algebra B(S) and let (E, E) be a measurable space. Let (ηt)t∈Z be a sequence of

stochastic elements taking values in E and let φ : S×E → S be a measurable map. Then

we can define a sequence of random functions (φt)t∈Z by setting φt := φ(·, ηt). Let T be

either Z or N. A stochastic process (Xt)t∈T taking values in S that satisfies

Xt+1 = φt(Xt) ∀t ∈ T (2.2)

is said to be a solution to the SRE associated with (φt)t∈Z if T = Z, and a partial solution

if T = N. We now construct a specific possible solution (Yt)t∈Z to (2.2) by using the

backward iterates defined as φ(0)
t = IdS and

φ
(m)
t = φt ◦ φt−1 · · · ◦ φt−m+1, m ∈ N.
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Let x ∈ S be an element such that

Yt+1 := lim
m→∞

φ
(m)
t (x) (2.3)

exists almost surely for all t ∈ Z. Bougerol (1993) and Straumann and Mikosch (2006)

show that this is the case under appropriate regularity conditions involving the contracting

behavior of each φt and the distribution of (φt)t∈Z. Moreover, they show that the sequence

of limits (Yt)t∈Z is then the unique ergodic solution to (2.2) and that any partial solution

converges to this unique one at a geometric rate as t→∞. In this article we pursue a sim-

ilar approach, we also focus on the limit of the backward iterates in (2.3), show that it is

well defined and that the resulting sequence (Yt)t∈Z possesses the right properties. How-

ever, we rely on considerably different conditions and replace the contraction condition

in Bougerol (1993) with a new resetting condition.

Assumption A. The sequence (φt)t∈Z satisfies the following conditions:

A1. The function φ is B(S)× E/B(S) measurable.

A2. The sequence (ηt)t∈Z is strictly stationary ergodic.

A3. There exists an M ∈ N and an event A ∈ EM such that (ηt, ηt−1, . . . , ηt−M+1) ∈ A

with positive probability and

(ηt, ηt−1, . . . , ηt−M+1) ∈ A ⇒ φ
(M)
t (x) = φ

(M)
t (y) ∀x, y ∈ S.

Condition A1 is rather weak and designed to ensure that backward iterates of (φt)t∈Z

evaluated at any point x ∈ S are proper random variables in S. Condition A2 is common

in the literature on SREs, note that it is less strict than assuming that the sequence (ηt)t∈Z

is independent and identically distributed. An in depth discussion on stationarity and

ergodicity can, for example, be found in chapter one of Krengel (1985). Condition A3 is

the resetting condition and states that there exists an event over M periods that guarantees

that the corresponding M ’th iterate is constant over S, but not necessarily over EM . This

implies that φ(M)
t is constant for a given realisation of (ηt)t∈Z in A and thus resets to one
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constant value, irrespective of its argument and hence the past values of a solution to the

SRE.

Under Assumption A we can prove that the limit of the backward iterates (2.3) ex-

ists, by showing that the sequence of backward iterates (φ
(m)
t (x))m∈N is almost surely

eventually constant. The proof relies on the fact that events of positive probability occur

infinitely often over time in a strictly stationary ergodic sequence. Therefore the event

(ηt, ηt−1, . . . , ηt−M+1) ∈ A occurs for infinitely many t ∈ Z and thus the limit of the

backward iterates trivially exists. Uniqueness and convergence of paths follow from the

same observation, since any two paths in model (2.2) will coincide at all such t, and

therefore must be the same (eventually).

Theorem 2.2.1. Let Assumption A hold and x ∈ S. Then the sequence (φ
(m)
t (x))m∈N is

almost surely eventually constant for all t ∈ Z. Consequently, (Yt)t∈Z is well defined,

strictly stationary ergodic and the unique solution to (2.2). Moreover, for any partial

solution (Ỹt)t∈N and function f : N→ R we have limt→∞ f(t)‖Yt − Ỹt‖ = 0.

We have to discuss some preliminary results on strictly stationary ergodic (SE) se-

quences before we can prove Theorem 2.2.1. One reason that SE sequences play a big

role in time series analysis is that they satisfy the conditions needed for Birkhoff’s ergodic

theorem, Birkhoff (1931). This theorem applied to an SE sequence of real valued random

variables (Xt)t∈N states that if E|X1| <∞, then almost surely

lim
n→∞

1

n

n∑
t=1

Xt = E(X1).

SE sequences are also easy to manipulate to create new SE sequences. We provide two

results from Straumann (2005).

Lemma 2.2.2. Let (E, E) and (Ẽ, Ẽ) be two measurable spaces, let (Xt)t∈Z be an SE

sequence of E-valued random elements and let f : EN → Ẽ be a EN/Ẽ measurable

function. Then the sequence of Ẽ-valued random elements (X̃t)t∈Z defined as X̃t =

f(Xt, Xt−1, . . .) is SE.

PROOF. See proposition 2.1.1 in Straumann (2005). �
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Lemma 2.2.3. Let (E, E) be a measurable space and let (S,B(S)) be a closed subset

of a separable Banach space endowed with its Borel sigma-algebra. Let (Xt)t∈Z be a

SE sequence of E-valued random elements and let (fm)m∈N be a sequence of functions

EN → S that are EN/B(S) measurable. Suppose that there exists a t ∈ Z such that

lim
m→∞

fm(Xt, Xt−1, . . .)

exists almost surely. Then there exists a function f : EN → S that is EN/B(S) measurable

and satisfies

X̃t := lim
m→∞

fm(Xt, Xt−1, . . .) = f(Xt, Xt−1, . . .)

for all t ∈ Z. Moreover, the sequence of S-valued random elements (X̃t)t∈Z is SE.

PROOF. See corollary 2.1.3 in Straumann (2005). �

PROOF OF THEOREM 2.2.1. Fix a t ∈ Z. We begin by proving that (φ
(m)
t (x))m∈N is

almost surely eventually constant. Define for s ≥ 0,

Is = 1{(ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A}.

The sequence (Is)s≥0 is SE by Lemma 2.2.2. Then, by Birkhoff’s ergodic theorem, almost

surely

lim
n→∞

1

n

n−1∑
s=0

Is = E(I0) = P((ηt, ηt−1, . . . , ηt−M+1) ∈ A) > 0.

This implies that the event Is = 1 occurs almost surely for infinitely many s ≥ 0. There-

fore we can choose the smallest such s, note that it is a random variable, and conclude

that

φ
(m)
t (x) = φ

(s)
t

(
φ

(m−s)
t−s (x)

)
= φ

(s)
t

(
φ

(M)
t−s

(
φ

(m−s−M)
t−s−M (x)

))
= φ

(s)
t

(
φ

(M)
t−s (x)

)
for all m ≥ s + M . It follows by Lemma 2.2.3 that the sequence (Yt)t∈Z is well defined
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and SE. Moreover, for s = 0 we get Yt+1 = φ
(M)
t (x) = φ

(M)
t (Yt−M+1) = φt(Yt), while

for s ≥ 1 we have

Yt+1 = lim
m→∞

φ
(m)
t (x) = φ

(s)
t

(
φ

(M)
t−s (x)

)
= φt

(
φ

(s−1)
t−1

(
φ

(M)
t−s (x)

))
= φt

(
lim
m→∞

φ
(m)
t−1(x)

)
= φt(Yt).

Therefore (Yt)t∈Z is a solution to (2.2). If (Xt)t∈Z is any other solution to (2.2), then

Xt+1 = φ
(s)
t

(
φ

(M)
t−s (Xt−s−M+1)

)
= φ

(s)
t

(
φ

(M)
t−s (Yt−s−M+1)

)
= Yt+1,

and hence it is identical to (Yt)t∈Z.

It remains to prove the final statement. Similarly as before, we can almost surely find

an s > M − 1 such that (ηs, ηs−1, . . . , ηs−M+1) ∈ A and thus

Yt+1 = φ
(t−s)
t

(
φ(M)
s (Yt−s−M+1)

)
= φ

(t−s)
t

(
φ(M)
s

(
Ỹt−s−M+1

))
= Ỹt+1

for all t ≥ s. We conclude that

lim
t→∞

f(t)‖Yt − Ỹt‖ = 0,

irrespective of the function f , because ‖Yt − Ỹt‖ is almost surely eventually zero. �

A consequence of Theorem 2.2.1 is that we can derive sufficient conditions for the

process (Yt)t∈Z to be ϕ-mixing. Let (Xt)t∈Z be a stationary process and let F ts, for−∞ ≤

s < t ≤ ∞, denote the sigma algebra generated by (Xs, Xs+1, . . . , Xt). Then the ϕ-

mixing coefficients for (Xt)t∈Z are given by

ϕX(t) = sup
C∈F0

−∞, D∈F∞t , P(C)>0

|P(D|C)− P(D)|

and the process is called ϕ-mixing if ϕX(t)→ 0 as t→∞.

Theorem 2.2.4. Suppose Assumption A holds and that additionally (ηt)t∈Z is ϕ-mixing

with geometric rate. Then (Yt, ηt)t∈Z is ϕ-mixing with geometric rate.
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The proof will depend on Theorem 2.2.1 as follows. Usually Yt+1 depends on the

entire past (ηt, ηt−1, . . .). However, if the event (ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A oc-

curs for some s ≥ 0, then Yt+1 = φ
(t−s)
t

(
φ

(M)
s (x)

)
and thus Yt+1 depends only on

(ηt, . . . , ηt−s−M+1). Therefore it will be enough to show that the probability that s is large

vanishes at a geometric rate. To show this we need the following two lemma’s.

Lemma 2.2.5. Let (E, E) and (Ẽ, Ẽ) be two measurable spaces, let (Xt)t∈Z be a sequence

of E-valued random elements that is ϕ-mixing (with geometric rate). For a m ∈ N we

denote f : Em → Ẽ to be a Em/Ẽ measurable function. Then the sequence of Ẽ-valued

random elements (X̃t)t∈Z defined as

X̃t = f(Xt, . . . , Xt−m)

is ϕ-mixing (with geometric rate).

PROOF. The sigma-algebra generated by (. . . , X̃−1, X̃0) is contained in the sigma-algebra

generated by (. . . , X−1, X0). Similarly, the sigma-algebra generated by (X̃t, X̃t+1, . . .) is

contained in the sigma-algebra generated by (Xt−m, Xt−m+1, . . .). Therefore ϕX̃(t) ≤

ϕX(t−m) for all t ≥ m. �

Lemma 2.2.6. Let (E, E) be a measurable space and let (Xi)i∈Z be a strictly stationary

sequence of E-valued random elements that is ϕ-mixing. Then for any B ∈ E such that

P(X1 /∈ B) < 1, we have

P

(
t⋂
i=1

{Xi /∈ B}

)
→ 0 as t→∞

at a geometric rate.

PROOF. For a real number z ∈ R we write bzc to denote the largest integer that is not

larger than z. Also, we use the ; symbol to denote joint probabilities. For any integer

15
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k ≤ t we have

P(Xt /∈ B; . . . ;X1 /∈ B)

=

bt/kc−1∏
i=0

P(Xt−ik /∈ B; . . . ;Xt−(i+1)k+1 /∈ B | Xt−(i+1)k /∈ B; . . . ;X1 /∈ B)

≤
bt/kc−1∏
i=0

P(Xt−ik /∈ B | Xt−(i+1)k /∈ B; . . . ;X1 /∈ B)

≤
bt/kc−1∏
i=0

P(Xt−ik /∈ B) + ϕX(k)

= (P(X1 /∈ B) + ϕX(k))bt/kc−1 .

Choose k big enough such that P(X1 /∈ B) + ϕX(k) < 1, which can be done since

ϕX(k) → 0 as k → ∞. Note that if any of the events that we conditioned on has proba-

bility zero, then the lemma follows immediately. �

PROOF OF THEOREM 2.2.4. For −∞ ≤ s < t ≤ ∞ we write Gts to denote the sigma

algebra generated by (ηs, ηs+1, . . . , ηt) and Ht
s to denote the sigma algebra generated by

((Ys, ηs), (Ys+1, ηs+1), . . . , (Yt, ηt)). Fix t ∈ N and let s ≥ 0 again be the random vari-

able that denotes the smallest number such that (ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A occurs.

Then we have Yt+1 = limm→∞ φ
(m)
t (x) = φ

(t−s)
t

(
φ

(M)
s (x)

)
. Therefore, for a B ∈ B(S)

and a k ≥ 0 the event {Yt+1 ∈ B ; s ≤ k} ∈ Gtt−k−M+1, since {s ≤ k} ∈ Gtt−k−M+1.

Similarly, for anyD ∈ H∞t the eventD∩{s ≤ t/2−M+1} ∈ G∞dt/2e, where we write dze

to denote the smallest integer that is not smaller than z. It follows for C ∈ H0
−∞ ⊆ G0

−∞,

by partitioning on s ≤ t/2−M + 1 and its complement, that

|P(D|C)− P(D)| ≤ ϕη(dt/2e) + P(D ; s > t/2−M + 1|C) + P(D ; s > t/2−M + 1).

Since {s > t/2−M + 1} ∈ Gtdt/2e we get

P(D ; s > t/2−M + 1|C) ≤ P(s > t/2−M + 1|C) ≤ P(s > t/2−M + 1) + ϕη(dt/2e).

16
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It follows that

ϕ(Y,η)(t) ≤ 2ϕη(dt/2e) + 2P(s > t/2−M + 1).

The first term goes geometrically fast to zero by assumption. For the second part we define

Xt = (ηt, ηt−1, . . . , ηt−M+1). Then (Xt)t∈Z is ϕ-mixing by Lemma 2.2.5. Therefore, by

Lemma 2.2.6, and the fact that P(Xt ∈ A) > 0, we have

P(s > t/2−M + 1) = P

dt/2e⋂
i=0

{Xt−i /∈ A}

→ 0

geometrically fast as t→∞. �

2.3 Application to heteroscedastic volatility modelling.

We now introduce a general nonlinear ARCH model that contains the model of Saı̈di

and Zakoian (2006) and illustrate how to apply our main results of Section 2.2. Let

u : R2 → [0,∞) be a nonnegative Borel measurable function that possibly depends on a

vector of parameters θ that lie in a parameter space Θ. The general model of interest is

given by

εt = σtηt,

σ2
t = ω + u(εt−1, σ

2
t−1; θ)1

{
ε2t−1 > kε2t−2

}
,

(2.4)

where ω and k are strictly positive. The generalisation compared to (2.1) is that we replace

the term αε2t−1 with a general updating function u. We discuss model (2.1) and other

examples in Section 2.3.1.

We start by analysing the dynamics concerning the time varying volatility. Given

that u is nonnegative we immediately see that any possible solution to (2.4) must satisfy

σ2
t ∈ I := [ω,∞). Assuming that the model is well specified, we get

σ2
t = ω + ũ(σ2

t−1, ηt−1; θ)1
{
σ2
t−1η

2
t−1 > kσ2

t−2η
2
t−2

}
, (2.5)

17
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where ũ(σ2
t−1, ηt−1; θ) = u(εt−1(σt−1, ηt−1), σ2

t−1; θ). Our analysis will focus on this

model, since any solution to (2.5) can be used to create a solution to (2.4). Note that

σ2
t depends both on σ2

t−1 and σ2
t−2. The random functions (φt)t∈Z associated with (2.5)

will therefore be defined on I2 and are given by

φt−1(x, y) = φ(x, y, ηt−1, ηt−2) = ω + ũ(x, ηt−1; θ)1
{
xη2

t−1 > kyη2
t−2

}
.

Unfortunately these are not in the framework of the SRE theory in Section 2.2, since

φ : I2 × R2 → I . Therefore we will look at the two dimensional model

(σ2
t , σ

2
t−1) = (φt−1(σ2

t−1, σ
2
t−2), σ2

t−1), (2.6)

which has state space S := I2. The random functions associated with (2.6) are given by

ψt−1(x, y) = ψ(x, y, ηt−1, ηt−2) = (φt−1(x, y), x).

Define φ(−1)
t (x, y) = y and φ(0)

t (x) = x, then the backward iterates for m ∈ N are given

by

φ
(m)
t (x, y) = φt

(
φ

(m−1)
t−1 (x, y), φ

(m−2)
t−2 (x, y)

)
,

ψ
(m)
t (x, y) =

(
φ

(m)
t (x, y), φ

(m−1)
t−1 (x, y)

)
.

We now state the weakest assumption for our nonlinear ARCH model that ensures we

satisfy Assumption A and therefore obtain the results from Theorems 2.2.1 and 2.2.4.

This result is derived in Theorem 2.3.2.

Assumption B.

B1. The sequence (ηt)t∈Z is SE.

B2. The following event has positive probability of occurring:

η2
t ≤ inf

x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

and η2
t−1 ≤ inf

x∈I

kxη2
t−2

ω + ũ(x, η2
t−2; θ)

. (2.7)
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Assumption B is very general, but quite complex and thus hard to interpret. It is

a restriction on the joint probability law of (ηt, ηt−1, ηt−2) that confines ηt and ηt−1 with

positive probability to an area described by the functions in (2.7). This area can be abstract

and depends on the parameters k and θ. In what follows we derive a condition that is

easier to verify than Assumption B2 by only focussing on this area close to the origin.

Note that if ηt and ηt−1 given ηt−2 can be arbitrarily small with positive probability, then

Assumption B2 is satisfied if the infima are nonzero. To that end we define the function

g(η; θ) := sup
x∈I

ũ(x, η; θ)

x
.

Assumption C.

C1. For all η ∈ R and θ ∈ Θ we have g(η; θ) <∞.

C2. The sequence (ηt)t∈Z is SE.

C3. There exist a N ∈ N such that P(|ηt| < 1/n; |ηt−1| < 1/m | ηt−2) > 0 almost

surely for all n,m ≥ N . Also the probability that ηt = 0 is zero.

Assumption C1 is an assumption on the updating function u of model (2.4). The con-

dition is of a similar nature as those found in theory on geometric ergodicity of nonlinear

time series, see Cline and Pu (1999). It implies that the function ũ as a function of x is

bounded on any closed interval, and asymptotically as x → ∞ is bounded by a linear

function. These two facts ensure that the infima in (2.7) are nonzero.

The other conditions are purely on the distribution of (ηt)t∈Z. Assumption C3 entails

that ηt and ηt−1 have positive probability of being arbitrarily small, independent of the

value of ηt−2. An example on how Assumption C3 can be derived is if (ηt)t∈Z is obtained

as a SE solution from another model. For example, suppose that (ηt)t∈Z is given by a SE

solution to an autoregressive process of order one

ηt+1 = βηt + ζt.

Then a sufficient condition would be that (ζt)t∈Z is iid, that ζt is absolutely continuous

with respect to the Lebesque measure on R and that ζt has a strictly positive probability
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density function. Note that these conditions imply that any set in B ∈ B(R×R×R) has

P((ηt, ηt−1, ηt−2) ∈ B) > 0, so in particular Assumption C3 is implied.

If we can assume that the sequence (ηt)t∈Z is independent, then Assumption C sim-

plifies as follows:

Assumption D.

D1. For all η ∈ R and θ ∈ Θ we have g(η; θ) <∞.

D2. The sequence (ηt)t∈Z is iid.

D3. There exist a N ∈ N such that P(|ηt| < 1/n) > 0 for all n ≥ N . Also the

probability that ηt = 0 is zero.

Assumption D3 implies Assumption C3 if (ηt)t∈Z is iid and describes that ηt being

arbitrarily small has positive probability. This, for example, is implied if ηt is absolutely

continuous with respect to the Lebesque measure on R and the probability density func-

tion of ηt is strictly positive on an open interval around zero. Common distributions such

as the normal and student-t distribution satisfy this condition.

Lemma 2.3.1. Assumption C implies Assumption B.

PROOF. We need to check whether Assumption B2 is satisfied. Assumption C1 ensures

that the random variable

inf
x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

is equal to zero if and only if ηt−1 = 0, since

inf
x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

≥ inf
x∈I

kxη2
t−1

ω + g(ηt−1; θ)x
=

kη2
t−1

1 + g(ηt−1; θ)
.

Assumption C3 therefore implies that kη2
t−1/(1 + g(ηt−1; θ)) is nonzero with probability

one. Therefore, the probability that

η2
t ≤

kη2
t−1

1 + g(ηt−1; θ)
and η2

t−1 ≤
kη2

t−2

1 + g(ηt−2; θ)
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is greater than zero. This follows, since the infima are nonzero, due to the fact that ηt and

ηt−1 can be arbitrarily small with positive probability so in particular, they have positive

probability to be smaller than these upper bounds. �

Theorem 2.3.2. If Assumption B holds, then there exists a solution ((εt, σ
2
t ))t∈Z to (2.4)

given by

σ2
t+1 = lim

m→∞
φ

(m)
t (x, y),

εt+1 =

√
lim
m→∞

φ
(m)
t (x, y)ηt+1.

(2.8)

This solution is stationary ergodic, unique and any partial solution converges to it at any

rate. Moreover, if additionally (ηt)t∈Z is ϕ-mixing with geometric rate, then ((εt, σ
2
t ))t∈Z

is ϕ-mixing with geometric rate.

PROOF. We will start by verifying that assumptions A are all satisfied, so that Theorem

2.2.1 implies that

(
lim
m→∞

ψ
(m)
t (x, y)

)
t∈Z

is a SE and unique solution to (2.6) such that all partial solutions converge to it. Assump-

tion A1 is satisfied by Borel-measurability of u. Assumption A2 requires the sequence

((ηt, ηt−1))t∈Z to be SE, which is implied by B1 and Lemma 2.2.2. Finally, we will show

that (2.7) implies that ψ(3)
t (x, y) = (ω, ω) for all (x, y) ∈ S and therefore implies As-

sumption A3. Note that

φ
(2)
t (x, y) = φt(φt−1(x, y), x) = ω + ũ(φt−1(x, y), ηt; θ)1

{
φt−1(x, y)η2

t > kxη2
t−1

}
,

so that φ(2)
t (x, y) = ω for all (x, y) ∈ S iff η2

t ≤
kxη2t−1

φt−1(x,y)
for all (x, y) ∈ S, which is

implied by

η2
t ≤ inf

x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

.
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The first part of the proof is concluded by noting that

ψ
(3)
t (x, y) = (φ2

t (φt−2(x, y), x), φ2
t−1(x, y)) = (φ2

t (x̃, ỹ), φ2
t−1(x, y)).

Next, a unique and SE solution to (2.6) to which all partial solutions converge to

implies the existence of a solution to (2.5) with the same properties, by projecting on the

first coordinate. The found solution is given by

lim
m→∞

φ
(m)
t (x, y),

which is a measurable function of (ηt−1, ηt−2, . . .). Therefore εt = σtηt is a measurable

function of (ηt, ηt−1, . . .) and thus (2.8) is a SE solution to (2.4) by Lemma 2.2.2. Unique-

ness and convergence of partial solutions transfer directly from those properties for (2.5).

Finally, suppose (ηt)t∈Z is ϕ-mixing with geometric rate. Then ((ηt, ηt−1))t∈Z is ϕ-

mixing with geometric rate by Lemma 2.2.5 and thus

(
lim
m→∞

φ
(m)
t (x, y), ηt+1

)
t∈Z

is ϕ-mixing with geometric rate by applying Theorem 2.2.4 and Lemma 2.2.5 again. Ap-

plying Lemma 2.2.5 once more shows that (2.8) is ϕ-mixing with geometric rate. �

2.3.1 Examples

This section discusses a couple of specifications of the updating function u in model

(2.4). We assume that the sequence (ηt)t∈Z is ϕ-mixing at a geometric rate and satisfies

the distributional conditions of either Assumption C or Assumption D. We then display

how quickly our theory can be applied by checking whether Assumption C1/D1 holds for

these examples.

Example 1 (Saı̈di and Zakoian (2006)). First, we consider model (2.1). We repeat it here

22



2.3. APPLICATION TO HETEROSCEDASTIC VOLATILITY MODELLING.

for readability.

εt = σtηt,

σ2
t = ω + αε2t−11

{
ε2t−1 > kε2t−2

}
,

where α is nonnegative. We have u(εt−1, σ
2
t−1;α) = αε2t−1, which is a measurable and

nonnegative function. Moreover, the function g(ηt;α) = α < ∞, so Assumption C1

respective D1 is immediately satisfied. Therefore there exists a strictly stationary and

ϕ-mixing at geometric rate solution to which all partial solutions converge almost surely.

Saı̈di and Zakoian (2006) assume that (ηt)t∈Z is iid. They then add the assumptions that ηt

is absolutely continuous with respect to the Lebesque measure on R and ηt has a strictly

positive probability density function. Note that this assumption is stronger than our As-

sumption D3. Finally, Saı̈di and Zakoian (2006) assume that Eηt = 0 and Eη2
t = 1, while

we don’t have any moment conditions at all.

Example 2 (Asymmetric news impact curve). Second, we consider a model that allows

the update function to be asymmetric in εt−1 rather than using the quadratic update ε2t−1

considered above. In particular, we follow Engle and Ng (1993) in using the asymmetric

news impact curve u(εt−1, σ
2
t−1) = α(εt−1 + δσt−1)2 and obtain the following model

εt = σtηt,

σ2
t = ω + α(εt−1 + δσt−1)2

1
{
ε2t−1 > kε2t−2

}
,

where α is nonnegative and δ ∈ R. Notice how for δ < 0, negative returns εt have

greater impact on future volatility σ2
t+1 than positive returns of the same magnitude, thus

capturing the empirical regularity known as the leverage effect. In this example we have

ũ(x, ηt;α) = αx(ηt + δ)2 and thus g(ηt;α) = α(ηt + δ)2 < ∞. Therefore, Assump-

tion C1/D1 is satisfied again and thus there exists a strictly stationary and ϕ-mixing at

geometric rate solution to which all partial solutions converge almost surely.

Example 3 (Robust volatility update). Finally, we consider a robust nonlinear ARCH

model by adopting an update function that is bounded in εt−1 rather than quadratic. In

particular, we study a model which embodies the news impact curve of the student-t

score volatility model introduced in Creal et al. (2011, 2013) and the beta-t EGARCH
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model proposed by Harvey (2013),

εt = σtηt, ηt ∼ t(λ)

σ2
t = ω + α

ε2t−1

1 + λ−1ε2t−1

1
{
ε2t−1 > kε2t−2

}
,

where α and λ are nonnegative. Notice that the innovations ηt are allowed to be fat

tailed. In particular, they belong to the family of student’s-t distributed random variables

with λ degrees of freedom. The updating function of this model becomes more robust

(with a lower upper bound) as λ → 0 so that the innovations ηt become fatter tailed and

outliers become more frequent. In contrast, as we approach the Gaussian case by letting

λ → ∞, then the updating function reverts back to that of the nonlinear ARCH model

considered in Saı̈di and Zakoian (2006). We now have ũ(x, ηt;α, λ) = α
xη2t

1+xη2t /λ
≤ αλ,

thus g(ηt;α, λ) ≤ αλ/ω < ∞ and Assumption C1/D1 is satisfied again. Hence, there

exists a strictly stationary and ϕ-mixing at geometric rate solution to which all partial

solutions converge almost surely.

2.3.2 Moments

Moment conditions for model (2.4) can be obtained by showing that the moments of the

backward iterates have a converging subsequence. To state our result we define

h(η; θ) = lim sup
x→∞

ũ(x, η; θ)

x
.

Theorem 2.3.3. Let Assumption D hold. Let p ≥ 1 and Θ̃ ⊆ Θ be such that E|ηt|2p <∞

and E g(ηt; θ)
p <∞ and

E
(
h(ηt; θ)h(ηt−1; θ)1

{
η2
t >

kη2
t−1

h(ηt−1; θ)

})p
< 1 (2.9)

for all θ ∈ Θ̃. Then the unique solution to (2.8) has finite absolute 2p’th moment, that is

E|εt|2p <∞ and Eσ2p
t <∞.

Theorem 2.3.3 is a generalisation of Theorem 3.3 in Saı̈di and Zakoian (2006), their

assumption to ensure moments in model (2.1) follows as a specific case from our result.
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The expectation in condition (2.9) can be hard to calculate, because of the indicator func-

tion.

Corollary 2.3.4. Condition (2.9) is implied by

Eh(ηt; θ)
p < 1. (2.10)

PROOF. This follows directly from Assumption D2 and the fact that the indicator function

is bounded by one. �

Condition (2.10) is much easier to calculate, but sacrifices flexibility by ignoring the

indicator function. Saı̈di and Zakoian (2006) show that (2.9) delivers more flexible bounds

for model (2.1) than (2.10) when ηt ∼ N(0, 1). We will discuss the examples of Section

2.3.1 to illustrate how both conditions can be useful.

PROOF OF THEOREM 2.3.3. By Assumption D2 we have E|εt|2p = E|ηt|2pEσ2p
t , so

we only have to show Eσ2p
t <∞. We know by theorem 2.3.2 that

σ2
t = lim

m→∞
φ

(m)
t (x, y),

so by continuity of the norm and Fatou’s lemma we have Eσ2p
t <∞ if

lim inf
m→∞

E
∣∣∣φ(m)
t (x, y)

∣∣∣p <∞. (2.11)

We will prove inequality (2.11). To ease notation we will write φmt = φ
(m)
t (x, y) and

suppress the dependence of the functions g and h on θ. We have

φmt = ω + ũ
(
φm−1
t−1 , ηt−1

)
1
{
φm−1
t−1 η

2
t−1 > kφm−2

t−2 η
2
t−2

}
≤ ω + g(ηt−1)φm−1

t−1

≤ ω + g(ηt−1)(ω + g(ηt−2)φm−2
t−2 )

Let n ∈ N be any integer. We separate the problem into three scenarios. Suppose φm−1
t−1 ≤
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n, then φmt is bounded by

ω + g(ηt−1)n. (2.12)

If φm−2
t−2 ≤ n, then φmt is bounded by

ω + g(ηt−1)(ω + g(ηt−2)n). (2.13)

Finally, suppose φm−1
t−1 , φ

m−2
t−2 ≥ n. Define

hn(η) = sup
x≥n

ũ(x, η; θ)

x
.

Then, for n ≥ ω, we have hn(η) ≤ g(η) and thus

φmt ≤ ω + hn(ηt−1)φm−1
t−1 1

{
η2
t−1 >

kφm−2
t−2 η

2
t−2

ω + ũ
(
φm−2
t−2 , ηt−2

)}

≤ (1 + g(ηt−1))ω + hn(ηt−1)hn(ηt−2)φm−2
t−2 1

{
η2
t−1 >

kη2
t−2

ω/n+ hn(ηt−2)

}
. (2.14)

It follows that φmt is bounded by the sum of (2.12)-(2.14) and therefore by independence

of φm−2
t−2 with ηt−1 and ηt−2 we get by Minkowski’s inequality that

[E (φmt )p]
1
p ≤ C(n) + [Efn(ηt−1, ηt−2)p]

1
p
[
E
(
φm−2
t−2

)p] 1
p ,

where C(n) is a finite constant depending on n and

fn(ηt−1, ηt−2) = hn(ηt−1)hn(ηt−2)1

{
η2
t−1 >

kη2
t−2

ω/n+ hn(ηt−2)

}
.

A sufficient condition for (2.11) is to find an appropriate n ∈ N such that the expectation

Efn(ηt−1, ηt−2)p < 1. This happens for any choice of n that is large enough, as implied

by (2.9) and the dominated convergence theorem, because fn(ηt−1, ηt−2) is bounded by

g(ηt−1)g(ηt−2) for large enough n and as n→∞ it converges pointwise to
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h(ηt−1)h(ηt−2)1

{
η2
t−1 >

kη2
t−2

h(ηt−2)

}
.

�

Example 1 (Saı̈di and Zakoian (2006) continued). Using Theorem 2.3.3 we can follow

the approach of Saı̈di and Zakoian (2006) and find the same conditions for model (2.1)

that ensure E|εt|2p < ∞ and Eσ2p
t < ∞. We need µ2p := E|ηt|2p < ∞ and note that it

implies Eg(ηt;α)p = αpµ2p <∞. In this example condition (2.9) boils down to

E
(
α2η2

t η
2
t−11

{
η2
t >

k

α

})p
< 1. (2.15)

Using Hölder’s and Markov’s inequalities we get for any m ∈ N that the expectation in

(2.15) is bounded by

α2pµ2pE
(
η2
t

{
η2
t >

k

α

})p
≤ α2pµ2pµ

1/m
2pm P

(
η2m
t >

(
k

α

)m)m−1
m

≤ α2pµ2pµ
1/m
2pmµ

(m−1)/m
2m

(α
k

)m−1

Therefore a sufficient condition for (2.9) is

α < max
m∈N

(
km−1

µ2pµ
1/m
2pmµ

(m−1)/m
2m

)1/(2p+m−1)

.

Example 2 (Asymmetric news impact curve continued). The model with leverage effects

requires again µ2p < ∞, which implies Eg(ηt;α)p = αpE(ηt + δ)2p ≤ 22p−1αp(µ2p +

|δ|2p) < ∞. This model provides an example where the expectation in (2.9) is hard to

calculate. The condition here leads to

E
(
α2(ηt + δ)2(ηt−1 + δ)2

1

{
η2
t >

kη2
t−1

α(ηt−1 + δ)2

})p
< 1,

but we cannot easily use the Markov inequality to bound the indicator function, since this

would lead to moments of the reciprocal of ηt. Instead we use (2.10) and get the sufficient
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condition α < [E(ηt + δ)2p]
−1/p to obtain E|εt|2p <∞ and Eσ2p

t <∞.

Example 3 (Robust volatility update continued). The robust model has a bounded updat-

ing function for the volatility, so therefore we immediately know that µ2p <∞ is the only

condition we need E|εt|2p < ∞ and Eσ2p
t < ∞. This result also follows from Theorem

2.3.3, since g(η;α, λ) ≤ αλ and h(η;α, λ) = 0 for all η ∈ R.

2.4 Conclusion

This chapter has introduced a new set of conditions that ensure the existence of a unique

stationary, ergodic and ϕ-mixing solution for time series models. Moreover, sample paths

are guaranteed to converge to this solution over time. The assumptions are different from

existing conditions as they do not impose Lipschitz, bounded growth or drift restrictions.

Instead we require that the time series contains resetting dynamics, where a reset implies

that the model has a positive probability to update to a value that does not depend on the

past. These dynamics are present in time series with sudden changes, such as stock prices

with financial bubbles. We have demonstrated the value of our results and illustrated how

to apply them by examining a generalisation of the nonlinear ARCH model studied in

Saı̈di and Zakoian (2006).
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